Markov Determinantal Point Processes
نویسندگان
چکیده
A determinantal point process (DPP) is a random process useful for modeling the combinatorial problem of subset selection. In particular, DPPs encourage a random subset Y to contain a diverse set of items selected from a base set Y . For example, we might use a DPP to display a set of news headlines that are relevant to a user’s interests while covering a variety of topics. Suppose, however, that we are asked to sequentially select multiple diverse sets of items, for example, displaying new headlines day-by-day. We might want these sets to be diverse not just individually but also through time, offering headlines today that are unlike the ones shown yesterday. In this paper, we construct a Markov DPP (M-DPP) that models a sequence of random sets {Y t}. The proposed M-DPP defines a stationary process that maintains DPP margins. Crucially, the induced union process Zt ≡ Y t∪Y t−1 is also marginally DPP-distributed. Jointly, these properties imply that the sequence of random sets are encouraged to be diverse both at a given time step as well as across time steps. We describe an exact, efficient sampling procedure, and a method for incrementally learning a quality measure over items in the base set Y based on external preferences. We apply the M-DPP to the task of sequentially displaying diverse and relevant news articles to a user with topic preferences.
منابع مشابه
Loop-free Markov chains as determinantal point processes
We show that any loop-free Markov chain on a discrete space can be viewed as a determinantal point process. As an application we prove central limit theorems for the number of particles in a window for renewal processes and Markov renewal processes with Bernoulli noise. Introduction Let X be a discrete space. A (simple) random point process P on X is a probability measure on the set 2 of all su...
متن کاملFast Sampling for Strongly Rayleigh Measures with Application to Determinantal Point Processes
In this note we consider sampling from (non-homogeneous) strongly Rayleigh probability measures. As an important corollary, we obtain a fast mixing Markov Chain sampler for Determinantal Point Processes.
متن کاملMonte Carlo Markov Chains for sampling Strongly Rayleigh distributions and Determinantal Point Processes
Strongly Rayleigh distributions are natural generalizations of product and determinantal probability distributions and satisfy the strongest form of negative dependence properties. We show that the “natural” Monte Carlo Markov Chain (MCMC) algorithm mixes rapidly in the support of a homogeneous strongly Rayleigh distribution. As a byproduct, our proof implies Markov chains can be used to effici...
متن کاملMonte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point Processes
Strongly Rayleigh distributions are natural generalizations of product and determinantal probability distributions and satisfy the strongest form of negative dependence properties. We show that the “natural” Monte Carlo Markov Chain (MCMC) algorithm mixes rapidly in the support of a homogeneous strongly Rayleigh distribution. As a byproduct, our proof implies Markov chains can be used to effici...
متن کاملStructured Determinantal Point Processes
We present a novel probabilistic model for distributions over sets of structures— for example, sets of sequences, trees, or graphs. The critical characteristic of our model is a preference for diversity: sets containing dissimilar structures are more likely. Our model is a marriage of structured probabilistic models, like Markov random fields and context free grammars, with determinantal point ...
متن کاملPrecise Deviations Results for the Maxima of Some Determinantal Point Processes: the Upper Tail
We prove precise deviations results in the sense of Cramér and Petrov for the upper tail of the distribution of the maximal value for a special class of determinantal point processes that play an important role in random matrix theory. Here we cover all three regimes of moderate, large and superlarge deviations for which we determine the leading order description of the tail probabilities. As a...
متن کامل